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• LIS Data Assimilation - background and 
capabilities (Joint with GMAO, AFWA, USDA and 
NESDIS)

• Examples
• Soil moisture assimilation
• Snow assimilation
• Skin Temperature assimilation

Outline
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Data Assimilation Support in LIS

• Capabilities for sequential 
data assimilation

• Supports multiple LSMs, 
multiple observational 
types, multiple DA 
algorithms

• Computation supported 
by LIS high performance 
computing infrastructure
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Improvement Metric (RMSE(OpenLoop) - RMSE(EnKF)) 
for soil moisture OSSEs
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Impact of surface soil moisture 
assimilation on root zone soil 

moistureMotivation

• Characterization of soil moisture stores is important for 
many real-world applications

- Agricultural and water resources management, 
meteorological/climate studies, flood/drought forecasting

• Common approaches to soil moisture estimation

- ground observations

- land surface modeling

- remote sensing observations

- constraining model predictions with observations through 
data assimilation 



Using remotely sensed soil 
moisture observations

• Remotely sensed observations (TRMM, AMSRE, SMOS, 
SMAP) are limited to observing a top thin portion of the 
soil column, down to depths between 1 cm and 5 cm.

• Large scale observations of root zone soil moisture do not 
exist 

• Various computational methods have been used to retrieve 
the soil moisture profile from surface measurements

• Integrated use of data assimilation techniques and 
hydrologic models is an effective method (Reichle and 
Koster (2003, 2005), Walker et al (2001), Reichle (2007)).



Problem Statement

• How do the model representations impact the 
efficiency of soil moisture assimilation? 

• How do the LSMs perform in a data 
assimilation system under various different 
representations of possible true land surface 
processes? 



Approach

• We use four different LSMs to assimilate synthetic 
observations

- NASA Catchment 

- Mosaic

- Noah 

- CLM version 2.0

• Study is conducted using the recently developed Land 
Information System data assimilation system infrastructure 

• LIS provides a uniform basis for this intercomparison



•! Mosaic, Noah, and CLM 
- traditional, layer-based soil moisture dynamics 

-! standard diffusion equation for unsaturated flow 
-! free drainage 

•! Mosaic    3 layers (2, 148, 200 cm;                                  !=3.5m) 

•! Noah       4 layers (10, 30, 60,100 cm;                             !=2.0m) 
•! CLM      10 layers (1.75, 3, 5, 8, 12, 34, 55, 91, 114 cm; !=3.2m) 

•! NASA Catchment LSM 

-! catchments divided into sub-areas  

   (saturated, unsaturated, and wilting)  
-! soil moisture profile determined by  

    deviations from equilibrium 
-! dynamic water table 

-! diagnose soil moisture content for 

-! 2 cm surface layer 
-! 100 cm root zone layer 

-! For our analysis: 

-! surface  ! native (model-dependent) surface layer (1.75 – 10 cm) 

-! root zone  ! top 100 cm of soil column (computed from available layers) 

Saturated 

Unsaturated 

Wilting 



Domain:  CONUS 1° by 1° 
Period:  Jan 1, 2001 to Jan 1, 2007 

Forcing:  GDAS 

For each LSM: 

1.  Generate ensemble integration 
 -- 12 members 

 -- perturb soil moisture states and surface meteorological forcing inputs 

 -- (model-specific) perturbations are correlated in time and in vertical dimension 

2.  Pick one member as (synthetic) “truth” integration and generate synthetic 
observations   

 -- sample “truth” as with typical MW sensor (once daily; mask out dense 

vegetation, precipitation events, frozen soil, snow on the ground) 
 -- add synthetic observation error 

3.! Use ensemble mean as “Open Loop” (no assimilation) estimates 

Minimum N_obs 



Suite of Assimilation 
Experiments

• For each LSM, four assimilation integrations are conducted, 
using synthetic observations generated from each model
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• 16 assimilation 
experiments

• 4 Identical Twin 
Experiments and 
12 Fraternal 
Twin 
experiments
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Mean                   (m3m-3)        Std 

Climatology  

! Mean and std of raw time 

series (masked to obs 

times and locations) 

Soil moisture climatologies 

differ ! 

1.) Must match cdf’s of 

synthetic obs and model 

prior to assimilation 

(Reichle & Koster 2004). 

2.) Obs error std 

Mosaic:  

 0.02 m3m-3 

Cat/Noah/CLM: 0.03 m3m-3 



RMSE not useful because of cdf matching.   

Instead, remove seasonal cycle and compute 

  R = anomaly time series correlation coefficient 

RO = skill (w.r.t. truth) of model (“open loop”) 

RA = skill (w.r.t. truth) of assimilation integration    

RO depends on perturbation settings (error std, vertical corr) 

RA depends on RO 

Use “normalized information contribution” 

  NIC = [ RA – RO ] / [ 1 – RO ] 

How much of the missing model skill 
is contributed by the assimilation? 

RMSE not useful because of cdf matching.   

Instead, remove seasonal cycle and compute 

  R = anomaly time series correlation coefficient 

RO = skill (w.r.t. truth) of model (“open loop”) 

RA = skill (w.r.t. truth) of assimilation integration    

RO depends on perturbation settings (error std, vertical corr) 

RA depends on RO 



1.) Average across rows (known truth physics): 

Mosaic or Catchment “truth” is “easier” to 

estimate in data assimilation than Noah or CLM 

“truth”. 

2.) Average 

across columns 

(unknown truth 

physics):  

Use of 

Catchment, 

Mosaic, and 

Noah in 

assimilation 

system is better 

than use of CLM. 

Why??? 

NIC rzmc Catch Mos Noah CLM Avg

Catch 0.71 0.54 0.36 0.38 0.50

Mosaic 0.55 0.69 0.31 0.33 0.47

Noah 0.43 0.43 0.36 0.26 0.37

CLM 0.11 0.21 0.10 0.45 0.22

0.45 0.47 0.28 0.36



For a given model integration (without assimilation), define 

 VCS ! R( sfmc, rzmc )  

where R = anomaly time series correlation coefficient 

Measures (time series) correlation between surface and root zone anomalies. 

Stronger coupling between 

surface and root zone anomalies 

CLM
Noah

Mosaic

Catchment



In a given data assimilation integration, how much do surface obs 

contribute to root zone updates? 

 Increment = Gain * (Observation – Model forecast) 

 Root zone gain:  K_rz ~ Cov( sfmc, rzmc ) 

 “Gain correlation” = K_rz  Std(sfmc) –1  Std(rzmc)–1 

Note:  Cov = ensemble covariance, Std = ensemble std 

 Depends on perturbations settings! 

State vector  X = [ sfmc, rzmc ]T 

Obs operator  H = [ 1 0 ] T 

Model error cov  P = Cov(X) 

Obs error cov  R 

Kalman gain  K = PHT ( HPHT + R )–1 



Same order as for vertical coupling strength. 

CLM

Noah
Mosaic

Catchment

How much do surface obs contribute to root zone updates? 

Stronger contribution of surface 

observations to root zone updates 



1.) Average across rows (known truth physics): 

Mosaic or Catchment “truth” is “easier” to 

estimate in data assimilation than Noah or CLM 

“truth”. 

2.) Average 

across columns 

(unknown truth 

physics):  

Use of 

Catchment, 

Mosaic, and 

Noah in 

assimilation 

system is better 

than use of CLM. 

If coupling between surface and root zone is weak in truth, 

assimilation of surface observations is less efficient. 

NIC rzmc Catch Mos Noah CLM Avg

Catch 0.71 0.54 0.36 0.38 0.50

Mosaic 0.55 0.69 0.31 0.33 0.47

Noah 0.43 0.43 0.36 0.26 0.37

CLM 0.11 0.21 0.10 0.45 0.22

0.45 0.47 0.28 0.36



Data Assimilation Experiment Setup
Snow OSSEs

• Modeling domain: North America

• SWE Assimilation using EnKF and and SCA 
Assimilation using a rule based Direct Insertion 
(Rodell and Houser, 2004)

• October 1, 2003 to  June 1, 2004

• Control/Truth runs using GDAS forcing (spun up 
from January 1, 2000) and Catchment LSM. 

• OpenLoop runs using GEOS forcing and Noah LSM

• Synthetic SCA observations flagged using cloud cover masks from the MODIS Level 3 
product (Hall et al, 2002)

• Synthetic SWE observations generated by

• data masks for dense vegetation 

• random noise of 10mm error and 10mm minimum and 200mm maximum cutoffs

•  Assimilation runs

• SCA obs into the Open Loop run once a day at 12Z using the rule-based DI

• SWE obs into the Open Loop run once a day at 12Z using the EnKF



Improvement Metric (RMSE(Assim) - RMSE (OL)  for 
snow OSSEs
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Time Series Comparisons of Snow fields 
C

hi
no

ok
, M

T
 

(4
8.

6N
, 1

09
.2

W
)

Pl
at

ea
u 

M
ou

nt
ai

n 
(5

0.
2N

, 1
16

.5
W

)

SWE Snow Depth



Time Series Comparisons of Snow fields 
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Skin Temperature Assimilation

• Need accurate assessment of LST because

• LST is at the heart of the surface energy balance and impacts surface fluxes 
to the atmosphere (sensible, latent, and upward longwave)

• LST is used as the lower boundary condition for retrieval of atmospheric 
profiles and cloud detection

• LST has very little memory and as a result, the assimilation must apply a 
continuous correction, to prevent the drift back to the model climatology 

• Assimilation of LST must consider differences between satellite and model 
climatologies

• Strategies

• Scaling of LST obs to model climatology 

• Dynamic bias estimation



1.) Off-line (a priori) scaling between climatology of obs. and land model: 

 + No assumption whether model or observations are biased. 
 + Easy to implement in pre-processing. 

 ! Static (cannot adjust to changes in bias). 

2.) Dynamic model bias estimation: 

 ! Assume obs. climatology is correct and the model is biased. 
 + Dynamic (adjusts to changes in bias). 

 Standard Kalman filter:  x+ = x- + Kx(y ! Hx-) 

    Kx = PxH
T(HPxH

T + R)-1 

 Bias estimation:   b+ = b- + Kb(y ! Hb-)  (2nd Kalman filter) 

  Assume:  Pb ~ Px 

    Kb = function(Kx) 

    Use KF increments to update bias. 

    Bias estimate is effectively time average 
      of increments. 

    Options for diurnal and semi-diurnal bias  
    parameterization. 



Modeling domain centered around 
IHOP’02

GSWP forcing at 1degree spatial 
resolution

Control run and synthetic observations 
produced using the Catchment LSM

Open loop and assimilation runs using 
Catchment LSM



Results

Skin Temperature Soil Temperature Latent Heat Flux

Sensible Heat Flux Ground Heat Flux



Summary and Future Work

• A flexible, reusable, extensible framework for land 
surface data assimilation

• Use of multiple observations, support for variational, 
smoothing algorithms, 3d algorithms, radiance based 
assimilation (through CRTM)

• Support for parameter estimation, calibration and 
generic optimization requirements - towards a SODA 
(Simultaneous Optimization and Data Assimilation) 
framework 


